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Abstract Environmental monitoring relies on compact,

portable sensor systems capable of detecting pollutants in

real-time. An integrated chemical sensor array system is

developed for detection and identification of environmental

pollutants in diesel and gasoline exhaust fumes. The system

consists of a low noise floor analog front-end (AFE) fol-

lowed by a signal processing stage. In this paper, we

present techniques to detect, digitize, denoise and classify a

certain set of analytes. The proposed AFE reads out the

output of eight conductometric sensors and eight ampero-

metric electrochemical sensors and achieves 91 dB SNR at

23.4 mW quiescent power consumption for all channels.

We demonstrate signal denoising using a discrete wavelet

transform based technique. Appropriate features are

extracted from sensor data, and pattern classification

methods are used to identify the analytes. Several existing

pattern classification algorithms are used for analyte

detection and the comparative results are presented.

Keywords Electronic nose � Gas sensors � Analog front

end � ADC � Chopper stabilization � Feature extraction

1 Introduction

Diesel and gasoline internal combustion engines produce

exhaust, which is a complex mixture of gases and fine

particles. Several previous studies have linked respiratory

diseases and cancer to exposure to gasoline and diesel

exhaust [1–4].

National Institutes of Health (NIH) launched an initia-

tive for exploring the environmental roots of these diseases

[5]. A reliable and reproducible quantitative measure of

exposure is required to establish a direct linkage of these

diseases to diesel and/or gasoline exhaust. Traditionally the

detection of environmental emissions has been performed

by using analytical instruments such as gas chromatogra-

phy/mass spectrometry (GC/MS) that are expensive, have

high operating costs and require trained personnel [6].

These techniques are not appropriate for real-time on-site

operation. Electronic noses (e-noses), which rely on arrays

of partially-selective chemical sensors for detection of

volatile chemicals, are a portable and cost-effective alter-

native [7]. In the past, e-noses have been used in diverse

applications such as spoilage detection of foodstuffs [8, 9],

disease diagnosis [10, 11] and process control [12]. Envi-

ronmental monitoring has become an important area of

application of e-noses during the past two decades due to

the increasing awareness of the effects of pollution on

human health and the quality of the environment [13].

Previously, electronic noses have been used for environ-

mental monitoring in applications such as detection of

smoke compounds [14], the determination of indoor air

quality [15] and odor emission rate of a compost hall [16].

However they have not been applied for real-time exhaust

monitoring problem. Monitoring a large number of pollu-

tant gases and particulates in the air is an emerging

application where the potential of the electronic nose is yet
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to be established. The introduction of the electronic nose

for this task is very challenging. In addition to very com-

plex target mixtures and low detection thresholds, varying

ambient conditions such as temperature and humidity dis-

tort the analyte signatures [13]. Thus, the classification

method must be robust to changes in analyte concentration

levels and environmental factors such as temperature and

humidity. A mobile sensor system is being developed [17,

18] which is designed to be capable of monitoring up to 40

analytes in diesel and gasoline exhaust in real-time. The

system is light-weight and low-cost and can be worn as a

badge, similar to a radiation counter.

These light-weight badges will each house an array of

electrochemical nanosensors for detecting and measuring

trace analytes in exhaust gases. This is in contrast to the

current analytical techniques which are expensive, bulky

and have significant power requirements. The system

consists of:

(a) an array of partially selective conductometric and

amperometric sensors which perform chemical

sensing,

(b) an integrated microelectronic component for power

management and data collection (i.e. the analog front-

end)

(c) a signal processing module for automatic identifica-

tion of the pollutants.

A block diagram of the system is illustrated in Fig. 1

and its prototype badge style sensor platform is shown in

Fig. 2. A reconfigurable analog front-end (AFE) sensor

interface circuit provides data acquisition and interfaces to

the DSP microcontroller. The electrochemical micro-elec-

tronics supports a multi-channel electrochemical array with

high performance amperometric and conductometric sen-

sors. This sensor front-end consists of

(a) low noise, programmable readout-amplifiers,

(b) sensor stimuli DAC and

(c) data conversion circuits.

The surface of the chip provides a CE (counter elec-

trode), RE (reference electrode) and eight WE (working

electrode) array for amperometric sensors. Also, the chip

provides gate voltage and current sweeping for eight FET

based conductometric sensors.

After sensor data acquisition, the next steps in the signal

processing stage are denoising, feature extraction and

classification for which we have developed and imple-

mented customized algorithms. These algorithms have

been evaluated using data from two distinct real-life sce-

narios, namely;

• The sensors are exposed to a pollutant (usually present

in high concentration) for a long period of time, and as

a result the sensors saturate and the outputs have a

steady-state value.

• The sensors are exposed to a pollutant gas for a short

period due to which we obtain a transient response

consisting of peaks in the sensor output.

Amperometric
Sensor Array

Conductometric
Sensor Array

Power
Management

CMOS ANALOG FRONT-END and 
SENSOR INTERFACE

OFFLINE 
PROCESSING

OFF-CHIP DATA 
STORAGE

Pattern 
Classification

Fig. 1 Block diagram of the proposed exhaust monitoring system

Fig. 2 Proposed badge style sensor platform module
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Appropriate combinations of features and classification

algorithms for each scenario have been tested offline using

Matlab.

The rest of the paper is organized as follows. Section 2

presents the details of the analog front-end. Section 3

describes the denoising approach. The feature extraction

and classification techniques as well as the results obtained

on synthetic and experimental datasets are detailed in

Sects. 4 and 5 respectively. The last Sect. 6 presents con-

cluding remarks.

2 Analog front-end design

To satisfy the size and power consumption requirements of

the measurement system, an integrated readout IC, data

acquisition and data signal processing module are required.

The signal chain for the readout system is illustrated in

Fig. 3(a). Figure 3(b) shows typical measurement setup for

analog front-end (AFE) with both conductometric and

amperometric sensors. In a typical test application the vapor

to be tested is injected into the small chamber and AFE

delivers the electrical signals from chemical reaction with

gas sensors. The AFE consists of a potentiostat, a current-to-

voltage converter, a resistor string digital-to-analog con-

verter (DAC) and a nested chopped analog-to-digital con-

verter (ADC) for the amperometric sensor as shown in

Fig. 4. The gas sensor interface circuitry is made of a current

steering DAC, a resistor string DAC for sensor stimuli, and a

nested chopped low-offset ADC for the conductometric

sensor in Fig. 6. The whole system operates with a supply

voltage of 1.8 V and is implemented in 0.18 lm CMOS

process with one poly and six layers of metal.

2.1 Amperometric sensor AFE: system implementation

The amperometric sensor produces current output depending

on gas concentration while the AFE applies a voltage

between working electrodes (WEs) and reference electrode

(RE). The applied voltage stimulus can determine sensing

mode in amperometric sensor system such as pulse vol-

tammetry or a cyclic voltammetry. In Fig. 4, a three bit

resistor string DAC is used as a stimulus for staircase vol-

tammetry. Stimuli sets the potential applied across the

electrochemical cell and can be either constant voltage or

cyclic voltammetry measurement [19, 20, 44]. Based on

sensor response characterization, a 125 mV DC stair step

stimulus is generated to get reduction/oxidation between the

(a)

(b)

CE

RE

WEs
MICRO

CONTROLLER

FLASH
MEMORY

Power
Management

2:1

Inject gases

Microcontroller &
SD card

Agilent 54641
Function Generator

Agilent Logic
Analyzer

CH1 CH2 CH3 CH4

CE RE WE

A
D

C

Li-ion
Battery

Fig. 3 Diagram and bench

characterization setup of

exhaust gas detection AFE.

a Block diagram. b Test setup
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Reference Electrode (RE) and the selected Working Elec-

trode (WE), sweeping from -125 to 870 mV differential

signal with respect to a reference electrode (RE) absolute

potential of 1 V. However, the approach with DC constant

voltage causes only oxidation of electrochemical gases to

detect chemical reactions more rapidly. The potentiostat

enforces a controlled potential at an electrode to produce the

desired perturbation for measuring and recording current

versus time response [48]. In Fig. 4, the potentiostat consist

of analog devices constructed with operational amplifiers

and is used to maintain the voltage between the WEs and the

RE. Based on the force to break equilibrium for oxidation/

reduction reaction, the Faradaic chemical reaction occurs at

the WE. The RE, which ideally carries zero current, and it

can track the applied voltage. When a potential is applied to

two electrodes (RE and WE) system, the Faradic current

from electrode chemical cell is measured as a function of

the potential. Since the reference electrode carries sensor

biasing current, the electrode will polarize and an over

potential will occur. Therefore, the potential at the WE is

unknown. To avoid this phenomenon, a three electrode

system is used. To satisfy this, a large gain is required for

amplifiers A1 and A2 in Fig. 4 [21, 45]. The range of the

sensor output signal can occur at an uncertain value within

the range of supply voltage. Therefore, the operational

amplifiers should have as high of a signal swing as possible.

To achieve high swing, the operational amplifiers

should have rail-to-rail outputs and the operational ampli-

fiers should drive the large double layer capacitor of

the CE and WE. Also, The Faradaic current based

on chemical reaction is amplified by a standard transim-

pedance amplifier with a feedback resistor, Rf. The SNR

of the system at the output of the transimpedance ampli-

fier is given for Fig. 4(b). The SNR of the system at

the output of the transimpedance amplifier is given by

SNR ¼ R2
f � i2

f

� �
= v2

noise;out þ R2
f � i2

sensor þ kT=Cs

� �
; where

If is the faradaic current, Vnoise,out includes the output offset

noise of amp and thermal noise of Rf, isensor is sensor

noise, and kT/Cs represents ADC sampling stage. Based

on these requirements, the operational amplifiers are

implemented using a rail to rail input stage architecture as

shown in Fig. 5 [20]. In fact, the high impedance amplifier

at RE ensures that very little current flows through the RE

and enforces all current to flow from the CE to the WE

when maintaining a constant voltage at equilibrium. The

current from the potentiostat is converted to voltage

through an I-to-V converter at the input of the ADC. A

current range of 10 nA–100 lA is detected depending on

gas concentration.
R
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Fig. 4 Sensor analog front-end

circuit and noise for an

amperometric sensor.

a Interface circuitry for

amperometric sensor. b Model

of a typical readout circuit for

amperometric sensor
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2.2 Conductometric sensor: system implementation

The conductometric sensor based on single wall carbon

nanotube (SWNT) is a miniature three-electrode device

designed to measure the conductivity of the gas sensitive

nanostructures placed between the electrodes [22]. Fig-

ure 6(a) shows the relevant Analog-Front-End (AFE)

components for the conductometric sensor. As shown in

Fig. 6(b), the noise specification for the ADC. Where Vin,dc

is input referred offset of preamp, Vn,a is preamp input

noise, and Vn,q is the power spectral density of the quan-

tization noise. Sensing resistor is 10 MX and predeter-

mined current source is 100 nA. Input referred noise of

resistor is 4kTR V2/Hz and preamp noise is typically 3 nV/

HHz. The accumulated output noise at ADC input is about

4kTR. The noise of ADC is kT/(Cs*fosr). Output signal

Total output noise density is 4kTR ? kT/(Cs*fosr) ?

Vin,dc ? Vn,a.

To precisely measure the large conductance change of

the sensor depending on the concentration, a high accuracy
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Fig. 5 The single ended rail-to-

rail class AB opamp used in the

sensor readout front-end
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Fig. 6 Sensor analog front-end

circuit setup for a

conductometric sensor.

a Interface circuitry for

conductometric sensor. b Model

of a typical readout circuit for

conductometric sensor
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9-bit current steering DAC in Fig. 7(a) is used to push a

programmable current level into the sensor array. The

current range of the DAC is from 100 nA (equivalent to

1 LSB) to 51.1 lA. The DAC has a measured DNL of

?0.402/-0.42 LSB and INL of ?0.941/-0.808 LSB. In

order to detect the resistance change in the conductometric

sensor with 1% or better accuracy, the sensor stimuli

quantization noise should be lower than 1%, which sets

the absolute minimum quantization error to be 7 bits. The

range of the base resistance in the conductometric sensor is

between 10 and 10 MX, which covers a 10 bit range. The

minimum current from the current steering DAC is

determined by the largest sensor base resistance to mea-

sure, as well as the voltage headroom for the current array.

In fact, 0.8 V headroom for a cascode current source is

required for a 1.8 V supply operation. To measure 10 MX
with 1.0 V voltage swing at the ADC input, 100 nA is

selected as 1 LSB of the DAC. To measure 100 X as 1%

change in 10 kX at 1 V, the maximum current source

needed is calculated as 100 lA. However, carbon nano

tube based conductometric sensor can withstand up to

60 lA only due to reliability limitation. Therefore a 9 bit

current steering DAC (51.1 lA peak current) is chosen.

The specific selected current level depends on ADC output
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code levels and it is controlled by the microcontroller. To

increase the conductometric sensor sensitivity level to

detect resistance changes when exposed to diesel and

gasoline exhaust, a 2-bit R-string DAC with a voltage

buffer (Class AB) is used to apply a static voltage to the

gate of the sensor. The output of the DAC is used to apply a

static voltage to the back-gate of the conductometric sen-

sor. After driving the programmable current to drain and

applying voltage to gate of the sensor, the result of the

conductance change between drain and source is digitized

by RD ADC.

2.3 First order RD ADC with nested chopper

stabilization

The RD ADC is used to digitize the electrochemical

response voltage which is obtained from the amperometric

sensor and the conductometric sensor. The complete signal

flow diagram for the ADC with cascaded integrate comb

(CIC) decimation filters are shown in Fig. 8(a) [47]. The

outputs of both amperometric sensors and conductometric

sensors are applied to the same ADC via an analog mul-

tiplexer. Two nested choppers modulate the output signal

from the sensors to two distinct frequencies. First is a low

frequency chopper at the ADC input and the second one

has a high frequency inside of the ADC. Figure 8(b) and

(c) show the frequency spectrum for nodes W, X, Y, and Z

in Fig. 8(a). Figure 8(d) shows the implementation of

nested chopper stabilization technique and digital deci-

mation filter with down sampling rate K and M.

The slow chopper is applied to decrease the mismatch

related residual offsets in the sampling network and moves

the sensor signal to a low chopping frequency [23, 24].

After the external slow chopper modulates the input signal,

the first order ADC digitizes the signal at the slow chopper

frequency and any potential residual offset at DC at node

W as shown in Fig. 8(a), It is critical to keep the slow

chopped signal within the flat-band of the quantization

noise for the ADC as shown in Fig. 8(b). Inner fast chopper

pair is required for pushing 1/f noise and DC offset of the

ADC integrator to a higher frequency. The high frequency

chopping is closed within the integrator, and the digitized

signal at the ADC output stays at the lower chopping fre-

quency. The demodulation of the input signal occurs after

the first digital low pass filter. The cutoff frequency of the

first set of CIC filter should be higher than the chopper

frequency to eliminate the risk of high frequency noise

demodulation. In fact, the first filter should pass the odd

harmonics of signal at odd chopper frequencies because the

signal should be reconstructed with low distortion. After

the digital demodulator with slow chopper frequency, the

signal at the slow chopper frequency is down-converted

back to DC by the chopper switches in the digital filter

module. Finally, the low frequency drift at slow chopper

frequency are eliminated by the second digital low-pass

filter as shown in Fig. 8(c) and (d).

A 16 bit converter is targeted for this system, since the

system was anticipated to have about 100 dB dynamic

range based on sensor noise floor and readout chain gain

requirements. The noise floor of the sensor is determined

by the sensor electrode size, eventually determining the

overall signal chain gain and resolution requirement. For

the conductometric sensors used, minimum detectable

resistance was determined to be 100 X with a 10 kX base

resistance. This corresponds to a minimum ADC resolution

of 10 bits when both amperometric and conductometric

sensors are used simultaneously in the gas detection sys-

tem. The required resolution of sigma delta ADC is

between 10 bit and 16 bit, making it flexible for various

minimum detection current values and sensor resistances.

Output of the ADC is single-bit bitstream data and is stored

into flash memory in the gas detection system and post-

processed off-line on a PC platform.

The first-order nested chopped RD modulator architec-

ture is shown in Fig. 9. The first order RD ADC consists of

an integrating amplifier with a 12 pF sampling capacitor

according based on kT/C noise requirements, and the ADC

operates at 262.144 kHz. The main drawback of the first

order RD ADC is generation of tones and pattern noise due

to static frequency content at the input. To reduce tonal

behavior and pattern noise, a non-periodic dither signal is

applied at the quantizer input. A linear feedback shift

register (LFSR) is used to generate a dither signal as shown

W
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in Fig. 9 [24, 46]. Figure 10 shows the PSD of the ADC

output for a full scale input of 1.2 V. The modulator is

operated at a frequency of 262.144 kHz, which yields a

conversion rate of 32 Hz. The low frequency offset,

undesired signal modulation caused by the modification of

the on-resistance of the transistor switches is pushed to

higher frequency by the slow chopping as shown in

Fig. 10(a). As shown in Fig. 10(b), the DC offset reduction

due to nested chopping is reduced by almost 500 lV with

respect to without slow chopping. Tables 1 and 2 shows the

specifications of the two types of sensors. The front-end IC

is implemented on a single poly, 6-level metal 0.18-lm

CMOS process. The differential amplifiers in the integrator

has 68.2 dB DC gain and the class AB buffer amplifier for

resistor string DAC has 86 dB DC gain. The total power

consumption of AFE is 23.4 mW at a supply voltage of

1.8 V for all 16 sensor channels. The chip core area is

2.65 9 0.95 mm2. The analog front end IC achieves is

91 dB SNR.

3 Signal denoising

Following the circuit design aspects, this section describes

the steps the signal processing and recognition stage. We

start by describing signal denoising using wavelets and

then continue with the feature extraction and pattern clas-

sification approaches.

3.1 Noise in acquired sensor data

Data acquisition is the first step in data analysis; sensors

collect the data and convert them into an electrical signal,

which is used for subsequent analysis. However, the elec-

tronic interface also introduces noise into the sensor mea-

surements which may result in inaccurate classification of

the responses. Amperometric sensors detect analytes using

the modulation of current flow caused by the electron

transfer reactions of the chemical. The current is a direct

measure of the rate of the electron transfer reaction and

hence is proportional to the concentration of the analyte

[25]. Conductometric sensors rely on the chemical modu-

lation of the conductivity of selected nanostructures by

the target analyte. The change in electrical resistance or

sensitivity is given by

S ¼ R� R0

R0

; ð1Þ

where R0 and R are the original and modified resistances

respectively. Ideally, the sensitivity is proportional to the

concentration of the analyte. In our case, the current being

measured is in the order of nAs and the change in

resistance is in the order of lXs. Due to the low signal-to-

noise (SNR) ratio, the signal peaks, that indicate the

presence of analytes, can be easily corrupted. This creates

difficulties in measurement of peak parameters such

as peak height, width and shape. Hence signal denoising

is essential to improve the sensitivity and accuracy of

e-noses.

3.2 DWT-based denoising

The Discrete Wavelet Transform (DWT) is a linear trans-

formation that can be used to analyze temporal and spectral

properties of non-stationary signals. The DWT of a

sequence x(n) is defined by the following equation
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WðnÞ ¼
X

j

X
k

xðnÞ2�j=2wð2�jn� kÞ; ð2Þ

where w (.) is the transforming function referred as the

mother wavelet. The DWT decomposes the signal into

coarse and fine scales, thereby providing a multi-resolution

representation. The DWT is computed by application of

successive levels of pairs of analysis filters to the input

signal. The advantage of wavelet representation is that it

can provide time and frequency parameters for specific

dynamic signal events, i.e. time–frequency localization. In

contrast, the Fourier transform based filtering methods

assume that the signal is stationary and thus cannot provide

any information on the variations in the spectrum with

respect to time.

Wavelet based denoising was originally proposed by

Donoho [26]. DWT based denoising techniques for biosen-

sors have been discussed in [27]. Denoising using the DWT

is a nonlinear operation that involves the following steps:

• Select or design a suitable wavelet transform on the

noisy data to obtain the wavelet coefficients.

• Threshold the wavelet coefficients to remove the noise.

• Zero-pad the signal and take the inverse DWT of the

thresholded coefficients from the previous step to interpo-

late in the time domain and obtain the signal estimate.

Two types of thresholding operations can be performed:

hard and soft. In hard thresholding, the wavelet coefficients

whose absolute value |W(n)| is less than the specified
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threshold limit Th are set to zero. Soft thresholding, which

is used in our simulations, is an extension of hard thres-

holding; it first performs hard thresholding, and then it

reduces the absolute value of the nonzero coefficients by T

as shown below.

jWðnÞj ¼ 0; if jWðnÞj � Th

WðnÞj j � T; if jWðnÞj[ Th

� �
ð3Þ

In our simulations, the values of the denoising param-

eters were determined using a training set drawn from the

data. The values which produced the best denoising per-

formance on the training set were assumed to perform

similarly on the entire dataset (Fig. 11). The values selec-

ted are given below,

(a) the biorthogonal wavelet achieved the best perfor-

mance in terms of reduced noise power,

(b) the level of decomposition was fixed at 7 and

(c) the threshold Th was set to be 15.5.

4 Simulations on synthetic data

4.1 Synthetic dataset: motivation

A key problem often associated with sensor signal pro-

cessing tasks is the lack of relevant and representative data.

The characteristics of signals from different types of

chemical sensors vary widely which limits the effective-

ness of any generic dataset, even if it were available. The

alternative is to wait for the design, fabrication and testing

of sensors before embarking on the feature extraction and

pattern recognition tasks. But the experiments required to

generate the real sensor data can be time-consuming and

difficult. However, adopting this approach unnecessarily

delays the development of the signal processing module.

Hence, the approach followed here is to use synthetic data

on which candidate algorithms can be trained and tested.

The algorithms are validated against the experimental

datasets once they become available.

In this case, typical saturation kinetic equations shown

below are used to generate the artificial sensor data.

R ¼ RmaxC

Ks þ C
; ð4Þ

R ¼ RmaxC

Ks þ C þ Ih

Ki

; ð5Þ

R ¼ RmaxC

Ks þ C þ C2

Ki

; ð6Þ

where Rmax is the saturation response, C represents the

analyte concentration and Ki, Ks and Ih are analyte specific

constants.

4.2 Simulations on synthetic data

A dataset [28] of synthetically generated sensor responses

representing steady-state values was used in the imple-

mentation of our customized signal processing modules.

The analytes to be identified are ethanol, methane, ammonia

and nitrogen-dioxide. The set consists of 36 vectors repre-

senting steady-state outputs from 6 sensors, out of which 20

vectors are responses to the 4 single gases (at 5 different

concentrations) and the remaining 16 vectors are responses

to 4 gas-mixtures (at 4 different concentrations). Thus the

Table 1 Specifications of

sensor interface
Analog front end IC

Technology 0.18 lm CMOS, 1 poly 6 metal layers

Die size 2.65 mm 9 0.95 mm

Power consumption 23.4 mW (1.8 V supply)

Opamp spec. Gain (86 dB), CMRR(95 dB), power(180 lW), GBW(3.4 MHz),

PM(67�), CM input(1.6 V), output swing(1,77 V)

Diff. amp spec. Gain(68.2 dB), CMRR(71 dB), power(190 lW), GBW(3 MHz),

PM (90�) CM input range(1.4 V), output swing(3.12 V)

Resistor string DAC DNL (?0.026/-0.012 LSB)/INL(?0.005/-0.028 LSB),

power(402.7 lW with class AB amp)

Current steering DAC DNL (?0.402/-0.42 LSB)/INL(?0.941/-0.808 LSB), power(93.6 lW)

Slow chopping freq/Fast

chopping freq.

32 Hz/131.072 kHz

Table 2 Sensor specifications

Sensor array

Array size 2 cm 9 2 cm for conductomeric sensor

10 cm 9 10 cm for amperometric sensor

Sensor

Characteristics

Conductometric sensor: 10 kX–10 MX

Amperometric sensor : 10 nA–100 lA

Electrode spec Cr/Au (20/180 nm) on SiO2/Si substrates for

conductometric sensor, thick carbon film with

1.25 Ag/AgCl for amperometric sensor
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analytes have to be classified into one of the 8 target classes.

A sample plot of concentration versus sensor output for

ammonia (NH3) is shown in Fig. 12.

Principal Component Analysis (PCA) is often used in

signal detection, signal compression and dimensionality

reduction. It is commonly used in electronic nose appli-

cations for feature selection when the sensor outputs are at

steady-state. PCA [29] is an approach that derives new and

useful features by forming linear combinations of original

features. PCA is an orthogonal projection of data from a

higher dimensional space to a lower dimensional space

such that the variance of the projected data is maximized.

Let C be the covariance matrix of a normalized and mean-

subtracted dataset X, each row of which is a measurement

and W be the matrix of basis vectors. The set of basis

vectors is associated with a subset of the eigenvectors of C.

The PCA transformation equation is given by

Y ¼ XW ; ð7Þ

Since the eigenvectors are mutually orthogonal, the set of

projected data is uncorrelated with each other and as a result,

each direction accounts for variation which has not been

captured by the others. Feature extraction and graphical

analysis using PCA has been extensively used in electronic

nose applications such as detection of pathogenic bacteria in

water [30], distinguishing volatile organic compounds

(VOCs) using coated TSM sensors [31].

The projection of the data points representing single

gases in the 2-dimensional (Fig. 14) PC space is shown to

enable visual analysis. As can be seen, scores representing

each gas are clustered together and there is a clear sepa-

ration between the clusters corresponding to each gas. This

motivates the selection of the first few principal vectors as

features for the pattern classification algorithms. In this

case, the first four principal components account for 95%

of the variance as shown in Fig. 13. Thus, we transform the

original data by projecting it on the subspace spanned by

the four orthogonal eigenvectors corresponding to the four

eigenvalues. We adopted the following procedure for

training and evaluating the algorithms. A training set was

constructed by selecting 25 vectors from the available 36

vectors. The algorithms were trained using only this

Fig. 11 Original and denoised signals

Fig. 12 Sample calibration plot

of hypothetical sensing data

from a sensor array

for a single gas

Fig. 13 Distribution of variance among the 6 eigenvalues
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training set. The performance of the trained algorithms was

evaluated using the test set, which consisted of the

remaining 11 vectors. The training data is used to carry out

model selection, i.e. a model that predicts the output (target

labels) from the input (sensor responses) with minimum

error was chosen. To compensate for the small data set

during the training process, n observations were omitted

and the rest was used for training (the leave-n out proce-

dure). Classification performance was evaluated using the

left-out samples. This procedure was repeated m times,

leaving out different sets of n observations during m itera-

tions and averaged the performance (m-fold cross valida-

tion) [32]. A value of m = 5 and n = 5 was used for this

simulation.

We customize, implement, and compare the following

algorithms that are popular in electronic-nose applications

for analyte classification [6]. We provide the details of the

pattern classification algorithms used.

– Linear/Quadratic Discriminant Analysis (LDA/QDA)

[33]: The aim of discriminant analysis is to find a

projection that minimizes distances within classes and

maximizes the distances between classes, i.e., it seeks

to maximize the ratio of Sb to Sw, where Sb represents

the between-group variances and Sw represents the

within-group variances.

Sb ¼
X

ieclasses

PiE ðli � lÞðli � lÞT
�� ��; ð8Þ

SW ¼
X

ieclasses

PiE ðxi � lÞðxi � lÞT
�� ��; ð9Þ

where fPigclasses
i¼1 represents the prior probabilities of the

classes, flig
classes
i¼1 is the mean of the entire data and li

represents the means of the classes. LDA fits a multi-

variate normal density to each group, assuming that the

covariance matrices of all the classes are identical.

QDA assumes that the covariance matrices of all the

classes are arbitrary. The Discriminant Analysis Tool-

box [34] was used for LDA/QDA. For this classifier, we

do not perform PCA on the dataset as PCA might

ignore the discriminatory features which are used by

LDA/QDA for classification.

– Multi-Layer Perceptron (MLP) [32, 35]: MLPs imple-

ment linear discriminants but in a space where the

inputs have been mapped nonlinearly. To permit a

much larger range of decision boundaries the discrim-

inant function g(x) can be expressed as a linear

combination of non-linear basis functions / as follows:

gðxÞ ¼ wTuðxÞ þ w0; ð10Þ

where w represents a weight vector whose values are

learnt by the MLP using a training algorithm. We used

the Netlab toolbox [36] for implementing MLPs. A

2-layer MLP was used in all cases. They were trained

using the scaled conjugate gradient (SCG) algorithm,

which has modest memory requirements and ensures

fast convergence. Weight decay is used to improve

generalization. A weight decay parameter of 0.01 and a

learning rate parameter of 0.01 were used. The number

of neurons in the hidden layer was determined by cross

validation.

– Radial Basis Function (RBF) Network [35]: A radial

basis function (RBF) network is similar to a MLP, but it

achieves pattern classification by fitting each class with

a localized kernel function instead of constructing

hyperplanes. A RBF network has two layers—namely,

a non-linear hidden layer and an output linear layer.

Fig. 14 Projection of sensor

responses of single gases on the

first 2 PC axes
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The radial basis function used in our simulations is the

Gaussian function,

ukðxÞ ¼ e
� x�lkk k2

2r2
k ; ð11Þ

where x is the d dimensional feature vector and l is the

vector determining the centers of the basis functions.

This was implemented in MATLAB using Neural

Network Toolbox. To determine the weights, the

learning rate parameter was fixed at 0.01. As in the

previous cases, cross validation was used to determine

the number of hidden neurons.

– Learning Vector Quantization (LVQ) [35]: The learn-

ing vector quantization (LVQ) network uses super-

vised competitive learning. Topologically, it consists

of a competitive (or unsupervised) hidden layer that

learns to classify input vectors and an output linear

layer that transforms the competitive layer’s outputs

into user-defined target classes. The input space is

divided into a number of distinct regions called

Voronoi cells. For each region, a reconstruction vector

(or Voronoi vector) is defined. For a new incoming

test vector, its region is first determined, and the data

vector is then represented by using the reconstruction

vector for that region.

The LVQ1 algorithm was used to perturb the recon-

struction vectors so that the quality of the Voronoi

cells is improved. The algorithm used for training is

LVQ1. The number of hidden neurons was determined

by cross-validation. This was implemented using the

MATLAB Neural Network Toolbox.

– Support Vector Machines (SVM) [29, 35]: An SVM

performs classification by transforming lower-dimen-

sional data into higher dimensional patterns, so that

data from two categories can always be separated by a

hyperplane. SVMs are known to maximize the separa-

tion between the classes, hence they are known as

maximum margin classifiers. The vectors that constrain

the width of the margin between the classes are the

support vectors.

The Spider toolbox [37] was used for implementing

SVMs. To extend SVMs to solve multi-class classifi-

cation problems, one-versus-one (OVO) binary classi-

fiers are constructed to separate one class from another.

For a k-class problem, k(k - 1)/2 binary classifiers

are required. The type (polynomial or RBF) of the

mapping kernel function and its associated parameter

(order and width respectively) was determined by cross

validation.

The parameters determined, for the different algorithms,

experimentally by cross-validation are given in Table 3.

The parameter determined using cross validation for MLPs,

RBF networks and LVQ networks was the number of

neurons in the hidden layer. The type of kernel function

(whether polynomial or radial-basis) and its corresponding

degree/width were the parameters determined for SVMs.

No parameters were selected by cross-validation for LDA/

QDA.

For steady-state responses, we train the classifiers using

the original dataset and compare their performance to

classifiers which are trained on the transformed data set

(features extracted using PCA) in order to verify the

effectiveness of feature extraction. The results of our

simulations are shown in Table 4. The performance col-

umns denote the percentage of correct classifications made

on the test dataset. PCA ignores the discriminatory features

which are used by discriminant analysis for classification.

Hence, we do not perform PCA on the dataset when the

classifier is LDA/QDA.

Our results reveal that feature extraction using PCA

improves classification. LDA/QDA, RBF and SVM were

found to provide the best performance in this scenario on

the test set.

5 Simulations with experimental data

5.1 Steady state responses

Three sets of experimental data [38–40] were available for

evaluating the steady-state classification performance.

The gases to be identified in Dataset E1 are acetone,

ethanol, methanol, dichloromethane (DCM) and methyl

ethyl ketone (MEK). The conductometric sensor array used

Table 3 Cross validation

parameters
Algorithm Parameter value

MLP 4

RBF 4

LVQ 6

SVM Polynomial, 2

Table 4 Classification performance on the test set

Algorithm used Classification (%)

Raw data Extracted features

MLP 54.55 72.73

LDA/QDA 81.82 –

LVQ 72.73 72.73

RBF 81.82 81.82

SVM 72.73 81.82
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for analyte detection consisted of seven sensors: bare,

SWNT/OEP, SWNT/TPP, SWNT/Fe-OEP, SWNT/

Ru-OEP, SWNT/Fe-TPP and SWNT/Ru-TPP. OEP (octa-

ethyl-porphyrin) and TPP (tetraphenyl-porphyrin) are com-

pounds used to functionalize the sensor surfaces to increase

their sensitivity. The sample response of bare SWNT con-

ductometric sensor to acetone is shown in Fig. 15.

The feature data matrix was constructed whose columns

were the peak responses from the seven sensors and the

rows represent measurements for each gas. For each gas,

three measurements (corresponding to 100, 75 and 50%

saturation) were selected. Thus, the data matrix had 15

rows and 7 columns. Dataset E2 consisted of responses of

three gases: ammonia, sulphur dioxide and nitrogen diox-

ide to a conductometric array of four sensors: bare,

SWNT/Au, SWNT/SnO2 (as prepared) and SWNT/SnO2

(annealed). The dimension of the feature data matrix was

27 9 3 (Fig. 16).

Multivariate analysis was carried out by performing

principal component analysis (PCA). In the first case, it

was determined that the first three principal components

(PCs) accounted for around 88% of the total variance. In

the second case, the first two PCs accounted for over 94%

of the total variance. As can be seen from Fig. 17, the

points are well clustered and were separated with 100%

accuracy by all the pattern classification algorithms con-

sidered in this work.

It should be noted that in the more challenging problems

such as those involving easily confusable gas mixtures (a

preliminary dataset consisting of responses to two binary

Fig. 15 Sample response of bare SWNT conductometric sensor to

acetone

Fig. 16 Dataset E2: projection of sensor responses of single gases on

the first 2 PC axes

Fig. 17 Dataset E1: projection

of sensor responses of single

gases on the first 3 PC axes
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mixtures was provided in Dataset E3) the clustering will

not be as clear as in the cases discussed here. The data

points in the mixture dataset were not sufficient to draw

conclusions about the suitability of the discussed feature

extraction and pattern classification algorithms. We note,

however, that a simple linear classifier working on PC

features gave a classification accuracy of 87.5% on the

training set.

5.2 Transient responses: simulations

Two sets of experimental data [41, 42] were used to

evaluate transient responses. The first dataset (Dataset T1)

consists of responses of three gases. These are oxygen,

nitrofluorene and nitronaphthalene present at the same

concentration (10 ppm) detected by four different types of

amperometric sensors (C/Pd/Pt/Ru coated WE). The sec-

ond (Dataset T2) consists of responses of three gases—

oxygen, hydrogen sulphide and sulphur-dioxide present at

different concentrations (ranging from 400 ppb to 2 ppm)

detected by a single amperometric sensor (C coated WE).

The sample response of bare C WE amperometric sensor to

SO2 is shown in Fig. 18.

Here, the features based on the transient response are

considered. A set of 4 features is extracted from the peaks

of the transient signals [43] (Fig. 19). These are:

(a) the difference between the peak and the baseline,

(b) the area under the curve,

(c) the area under the curve left of the peak, and

(d) the time from the beginning of the signal to the peak.

Cross-validation was used for model selection in this

case also. Again, no cross-validation was carried out for

discriminant analysis. MLP and LVQ were also tried, but

they performed poorly and achieved a classification accu-

racy of around 50%. The results of the 3 algorithms are

shown in Table 5. For transient responses, SVMs were

found to give the best performance on the test dataset. The

performance of the algorithms must be evaluated on larger

datasets when they become available before further con-

clusions can be drawn regarding the discriminative capa-

bilities of the classifiers. Also, the performance of the

algorithms was better on the experimental dataset as

compared to the synthetic dataset because the latter dataset

was more complex—it had 36 records drawn from nine

classes (which included single gases and gas mixtures)

whereas the former had the same number of records, but

drawn from only three classes.

Fig. 18 Sample response of bare C WE amperometric sensor to SO2

Fig. 19 Transient signal

features

Table 5 Cross validation

parameters
Algorithm Value of

parameter

RBF 4

SVM Polynomial, 2
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6 Conclusions

A signal processing approach was developed for detecting

environmental pollutants along with a 0.18-lm CMOS

AFE IC designed for a 16 channel gas sensors array. The

AFE IC consists of an integrated potentiostat, a low noise

I/V converter, a current steering DAC, resistor string DACs

and the first-order RD ADC for both conductometric and

amperometric sensors. To reduce offset and residual noise

at low frequency that arises due to clock feed through

mismatches and integrator mismatches, the chopper

stabilization was used.

Following the data acquisition section, the motivation

for the feature extraction techniques chosen for steady state

and transient responses was provided and the effectiveness

of these features with respect to signal classification was

analyzed. Techniques to deal with the paucity of training

data were also described. For steady-state responses, PCA

could be used for feature extraction. For transient respon-

ses, the four parameters from the peak of the transient

curve were found to provide good features. LDA/QDA and

SVMs have shown good performance among the classifi-

cation algorithms used in this work. We are currently

working on larger datasets to verify and test further the

performance of the classifiers. Future directions to this

work include developing techniques to determine the

concentration of the analytes when they are present in

mixtures.
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